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INTRODUCTION

This document is a final report to NASA-Langley Research Center for ex-

perimental radiation effects work performed by the Boeing Aerospace Company

between August 1974 and June 1975 under contract NASI-13530. In this con-

tract Boeing has utilized a multi-radiation source facility to investigate the

stability of certain spacecraft materials in situ (in vacuum). The materials,

furnished by NASA, are dielectric surfaces and composites suitable for

temperature-control of spacecraft.

The materials studied are the latest candidates for application on NASA

spacecraft. Included are derivatives of commercial films such as FEP Teflon and

Kapton, and also some of the product of NASA laboratory efforts in the polymer

field. The commercial films, being optically transparent over much or all of

the visible wavelength region, have been metallized through commercial

processes to convert them to highly reflective second surface mirrors, then

adhered to aluminum substrates. The latter have been applied to reflective

aluminum substrates directly. No paints or other "Lambertian" (diffusely

reflecting) candidates have been investigated. (An approximation of a dif-

fusely reflecting surfacem"embossed '' metallized FEP Teflonwhas been in-

cluded.) More complete descriptions are given in the Section "Test Materials".

The materials selection is indicative of trends in this field: there is

no longer an emphasis or reliance on "white paints" Along with this is the

emphasis on utilizing a state-of-the-art facility for the evaluation testing

and measurements. The 3 primary space radiation sourceswultraviolet radia-

tion, protons, and electrons_are all simulated, simultaneously. The vacuum

environment inside the chamber is also an excellent simulation of space

conditions, having been obtained by techniques that preclude use of pumping

fluids or oils. Reflectance measurements of these coatings have been made with

highly accurate techniques as will be shown in the Section "Test Results".

The most significant features of this facility will be presented in detail in

the Section "Facility Description"



PROGRAMREPORT

This Section describes the facility used for the irradiation tests, re-
views the test materials and samples, presents the detailed results from the

3 tests conducted, and discusses the findings and various comparisons of
results from 2 or more tests.

Facility Description

The work was done in a Boeing vacuumchamber knownas the CRETC(combined

radiation effects test chamber). This facility was originally designed, and

over the years has continually been upgraded, to optimize the capability for
as complete and accurate simulation of the space radiation environment as

knowledge and the state of the art will allow. For example, conventional tech-

niques for vacuumpumping--still in widespread use elsewhere--have been dis-

carded in the CRETCto eliminate contamination. Energy capabilities have been

expanded as the need has risen for investigating the effects of charged particle
spectra on spacecraft materials.

The capabilities of the CRETCfacility can be summarizedas follows:

I. Continuum ultraviolet radiation (xenon arc discharge) at selectable

intensities ranging from less than one solar constant to 5 solar

constants (I A.U.), simultaneously with:

2. Electrons with energies betweenapproximately I0 and 125 keV (higher

energies with conditioning) and/or protons with energies from 0.5 to
80 keV (kilo electron volts).

3. Controlled temperatures for test and reference (standard) samples;
temperatures range from -195 °C (-320 OF) to +180 °C (+360 OF).

Temperature control is not interrupted for measurementsin the

chamber's integrating sphere.

4. Vacuumpumping (both rough and hard) without resorting to organic

and other contaminating fluids. The sequenceused is (a) dry

nitrogen gas aspiration, (b) cryo-sorption, (c) large-surface LN2
cryogenic, and (d) ion pumping, to obtain a 10-8 torr vacuumbefore

testing begins.



5. Extensive automation, interlocks, and sequential shutdownprocedures

during unmannednight-time operations, to allow as high a reliability

as possible during long-term, continuous testing.

6. High-precision spectral reflectance data system, consisting of a
double-beam spectrophotometer coupled to a data-logging module whose

output is ready for computer processing.

Test Parameters and Operations

From the available range within which the experimental apparatus operates,

the following test parameters were chosen for the first test in accordance
with the contract work statement:

(I) UVat a one-sun rate in the 0.2 to 0.4 micrometer wavelength region.

(2) Electrons with an energy of 125 keV (before scatteringwll5 keV

after scattering) and with a continuous arrival rate (flux) at
the sample plane of 2 x 109 e/cm2-second.

(3) Protons with an energy of 50 keV and with a continuous flux of
2 x 109 p/cm2-sec at the sample plane.

(4) Samplesubstrate temperature of 20 °C, maintained throughout the

test.

The experimental apparatus is pictured in Figures I, 2, 3, and 4. Fig-

ure 1 is an overall view of the CRETCfacility. Figure 2 is a closer view of

the electron high-voltage feedthrough portion of the chamber, a recent addition

allowing testing at the relatively high energies desired for this program.

Figure 3 shows the sample reflectance measurementsystem. Figure 4 shows the

first array of NASA-Langley-supplied samples, mounted in the chamber. These

samples were quite specular before irradiation; hence in Figure 4 they appear

in various shadings of gray depending upon what portion of the roomenviron-

ment is reflected by each of them into the camera. In reality the samples are

"gold" or "silver" as to general color tone. Figure 4 is intended to show the

sample array configuration on the temperature-controlled sample block in the
CRETCchamber, and the size of each l-cm-square sample relative to adjacent

apparatus.



Figure 1 .  Boeing CRETC Faci l i ty  

The contract also called for measurements o f  each sample's reflectance 
properties periodically throughout the t e s t ,  and frequently enough to  measure 
well the ra te  of reflectance degradation and onset o f  damage saturation. Both 
in-air  and in-vacuum measurements were included. Once the t e s t  exposure began, 
a l l  measurements were made i n  vacuum ( i n  -- s i t u ) .  The exact test-hour points a t  
which measurements were made, a re  l i s t ed  i n  a table l a t e r ,  i n  the Section "Test 
Sequence". 
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I 

I 

Figure 2. View Above C R E T C  Chamber Showing Electron 
Gun Power Supply and Feedthroughs 

As fo r  sar lue, the C R E T C  u t i l i ze s  a n  integrating 
sphere reflect0 I . -  s i t u .  Only the measurement l i g h t  
sources, monochromator, ana electronic and l i g h t  chopping apparatus are ex- 
ternal to the chamber. 
the reflectance of the integrating sphere's magnesium oxide wall. 
t ion to  absolute reflectance, assisted by NBS and  other known reference 

Sample reflectance measurements are  made relat ive to  
Normaliza- 
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Figure 3 .  Sample Reflectance Measurement System 

measurements, i s  handled by computer since a l l  original sample da ta  i s  computer- 
processed routinely. 
(solar absorptance) i s  derived from solar reflectance, which i s  defi'ned as 

The thermophysical property o f  interest for this program 

6 



F i g u r e  4. Second-Surface M i r r o r  Coat ing Samples 
f o r  NASA-Langley Tes t  1 

i I s  ( A ) R (  A)dA 
I s ( A )  dX S o l a r  r e f l e c t a n c e ,  R s  = 

where Is(A) i s  t h e  s o l a r  i r r a d i a n c e  as a f u n c t i o n  o f  wavelength A, and R ( A )  i s  

sample r e f l e c t a n c e ,  g e n e r a l l y  a f u n c t i o n  o f  A. 
i s ,  b y  d e f i n i t i o n ,  u n i t y  minus Rs i n  opaque samples. The i n t e g r a l  i I s ( X ) d A  i n  

t h e  denominator i s  an express ion  o f  t h e  s o l a r  "cons tan t " .  

i s  computer ized i t  i s  a p p r o p r i a t e  t o  r e p l a c e  t h e  i n t e g r a l  e v a l u a t i o n s  w i t h  

numer ica l  summations, so t h a t  

O f  course, s o l a r  absorptance 

When data process ing  

7 



as = 1 - Rs = 1 I00

I00

i:l

This simplified a s equation is valid when the wavelengths used in the

computer summation are selected in accordance with the solar spectral shape or

weighting, which is to say, in accordance with the shape of the Is(h ) func-

tion.

Figure 5 is a set of typical computer-processed data plots of reflectance

vs. wavelength. The reflectance data are from an aluminum control sample

measured 5 times over a period of approximately 600 hours. The precision and

reproducibility of the CRETC measurement system are evident from these data.
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Figure 5. Effects of Vacuum on Control Sample
(Polished Aluminum Substrate)
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Other salient points regarding test operations can be summarizedas fol-

lows. Checking and calibration of UVintensity is done before beginning a
test and periodically during the test. The sun rate is determined from

radiometer output levels taken with and without a UV-absorbing filter over

the radiometer detector. Since the UV-absorbing filter also excludes ten per-
cent of the incident radiation at wavelengths longer than the ultraviolet

(five percent reflection at each surface of the filter), a correction is made
for radiometer readings taken with the filter over the radiometer sensor. For

a total radiation reading T and a UV-filtered reading F,

T
Ultraviolet Sun Rate = (8.0) (0.091) = 1.37 (T - I.II F),

where 8.0 is the radiometer sensitivity in millivolts per incident sun

(_0.14 watts/cm 2) and 0.091 represents the ultraviolet content of the sun

(at air mass zero). The uniformity of ultraviolet radiation intensity across

the sample array is determined by "mapping" with the radiometer held in a

precise jig. Spatial uniformity of ultraviolet radiation can be maintained

within plus or minus I0 percent across the sample array. The F and T values

indicate that the ultraviolet content of the long-arc xenon sources is

approximately I0 percent of their total output.

Similarly, electron and proton intensities are measured just after the

chamber is evacuated, before the pre-exposure sample measurements commit to a

go-ahead. These intensities are also checked frequently during testing, via

continuous monitors (Faraday cups) and an array of metallic tabs that measures

beam uniformity.

The proton beam originates in an RF-excited plasma more than 5 meters from

the sample plane. The proton beam steadily expands after leaving the plasma

orifice and attains a size larger than the sample array as the protons reach

the sample plane. Spatial uniformity is typically +15 percent; temporal

uniformity typically is _I0 percent. The proton beam is not rastered, but it
+

is passed through a bending magnet to separate H+ ions from H2 and other

species.

Electrons are emitted thermionically from a filament that is part of an

electron gun inside the CRETC chamber. Accelerating and focusing electrodes

9



between the filament and the sample plane form the electrons into a beam. A

thin foil scatters the electrons as the beamcontinues toward the sample

array. No electrons are stopped in the foil, but electron energy degrades

(approximately I0 keV) as the beamtraverses the foil, emerging with a
Gaussian distribution. No rastering occurs. The array of samples constitutes

a small portion of the straight-ahead solid angle, so that spatial uniformity
of electrons across the samples is _I0 percent, and temporal uniformity a like
value.

Test Sequence

The contract originally called for one test lasting 1400 hours. The

first half of this was normal, including the collection of several "rounds" or

sets of reflectance data on each sample. At 690 hours the proton source be-

cameerratic, necessitating an up-to-air repair. A second test was instituted

to obtain comparative data for exposure rates of 1.5 times the rates used in

the first test. The principal finding of this second test, as will be dis-

cussed more fully following presentation of test results, was that several

materials reacted in an appreciably different mannerwhen exposed to electrons

and protons at the 50 percent higher rates. This second test was ended at

610 hours. A third test was added to the program which included more early-

hour test data and the use of a silver-filled-adhesive with the 5-mil,
silvered Teflon material.

The parameters that were varied during these three tests are summarized
in Table I° The exposure hours and fluences at which reflectance measurements

were made in each test are indicated in Table II. In Table II ultraviolet sun

hours (ESH) are equal to the numberof exposure hours stated for Tests 1 and 3;

for Test 2, ultraviolet exposure equals the numberof equivalent hours stated.

Test Materials

In the series of tests that was performed for this contract the emphasis

was on studying Teflon, Kapton, and specialized polymers that could be applied

to metal substrates. Variations in film thickness, in second-surface metal,
and in lamination of Teflon and Kapton were included. In the third test a

I0



Table I. Test Parameters and Variants

PARAMETER

Test Length

Sun Rate

Max. Equivalent
Solar Hours

Proton Flux

Max. Proton
Fluence

Electron Flux

Max. Electron
Fluence

Last in situ
Reflectance Data

Additional
Data

TEST1 TEST2 TEST3

690 hours 610 hours 850 hours

1.0 1.5 1.0

690 ESH

2xlO9" p/cm2_sec
d

5xlO 15 p/cm 2

2xl 09 e/cm2-sec

5xl 015 e/cm 2

588 hours

Pre-test
% in air

850 ESH915 ESH

3xlO 9 p/cm2-sec 2xlO 9 p/cm2-sec

7xlO 15 p/cm 2 6xlO 15 p/cm 3

3xlO 9 e/cm2-sec 2xlO 9 e/cm2-sec

7xlO 15 e/cm 2 6xlO 15 e/cm 2

610 hours 636 hours

Post-test,
%R recovery
in air

Post-test, in-
vacuum %R re-
covery

newly-developed modification to silver-backed Teflon was added. The silver-

backed Teflon was bonded to the aluminum substrate with an adhesive which was

filled with finely divided silver, providing a partially conducting path from

the vapor-deposited s_Iver to the sample's aluminum substrate. All other com-

mercial second-surface mirror coatings in these three tests were bonded to the

6061 aluminum substrates with a flight-qualified, double-back, pressure-

sensitive silicone adhesive which uses a 0.025mmKapton carrier (Mystic 7366).

The Kapton/Teflon laminates were processed using Type C, FEP Teflon,

which was bonded to the Kapton by use of heat and pressure. The BTDA/ODA and

PPQ are experimental polymers made at Langley and applied directly to the

Boeing-supplied substrates. The high solar absorptance values for these

materials are indicative of their slight coloration and the "polish" of these

substrates.

II



Table II. Exposure Hours and Fluences for SampleReflectance Measurements

TEST1 TEST2 TEST3

O; pre-exposure,
samples in air

O; pre-exposure,
samples in vacuum

1O0 hours

7._ x 1014 p/cm2• x 10147 e/cmL

303 hours

_15 p/cm 22.2xi 15
2.2 x 1 e/cm L

588 hours

01_ p/cm 2
4.2 x 101•2 x 1 elcm _

1.5 Sun Rate

B

O; pre-exposure,
samples in vacuum

64 hours

(xi.5=96 equiv, hours)

0 1 2
6._ x 1014 p/cm_6. x 1 e/cm L

193 hours
(xi.5=290 equiv, hours)

2.1 x I011_ p/cm 2
2.1 x I0 e/cm _

391 hours
(xi•5=586 equiv, hours)

4.2 x I011_ p/cm 2
4.2 x 10 e/cm _

610 hours
(xi.5=915 equiv, hours)

6.6 x I0]_ p/cm_
6.6 x I0 i e/cm

in situ stability check
310 hours after previous
reflectance measurements

O; pre-exposure,
samples in vacuum

44 hours

3._ x I_I14 p/cm_3. x 1 e/cm

197 hours

1.4 x I_Ii_ p/cm_1.4 x 1 e/cm

391 hours

2.8 x 1015 p/cm 2

2.8 x 1015 e/cm 2

636 hours

4.6 x I0 1 p/cm_
4.6 x I01 _ e/cm

in air after test

exposure ended at
850 hours.
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The materials tested are listed and described in Table III. A multiple

numberof like specimenswas exposed in each test, and this number is given in

Table III. Testing multiple numbersof specimens provided a statistical base

for averaging changes in the values of properties that depend on microscopic
phenomena(see Discussion).

Test Results

Principal Results, Test I.- All the samples exposed in this test showed

measurable (but not extreme) degradation of reflectance, and therefore increased

solar absorptance, as the test progressed. All ms values derived from the re-

flectance measurements made during the first test are gathered in Table IV. A

comparison of results obtained on the 5-mil aluminized FEP Teflon and on the

5-mil silvered FEP Teflon shows somewhat greater damage in the aluminized

material (Figure 6). This is consistent with the wider band-gap or wavelength

0.10

0,08

TYPE AVE OF

• 5-MIL Ag FEP (3)

A DIFFUSE 5-MIL Ag FEP (2)

O 2-MIL Ag FEP (2)

o 5-MIL AI FEP (3)

n 5-MIL AI

0.06. _" 5-M I L Ag

o.o L

0 I I I 0

0 100 200 300 400 500 600

EXPOSURE HOURS (= UV ESH)

Figure 6. Change in Solar Absorptance for
Teflon Samples During First Test
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Table III. Materials Tested and Number of Specimens Exposed

SAMPLE DESCRIPTION

5-mil _Txpe A FEP Teflon/
l.s

2000 A Aluminum/Adhesive

5-mil Ty_e A FEP Teflon/1800 R Silver/

400 A Inconel/Adhesive

5-mil Type A FEP Teflon/1800 R Silver/

i

400 _ Inconel/Silver-Filled

Adhesive

0

2-mil Type A FEP Teflon/1800 A Silver/
0

400 A Inconel/Adhesive

O
Diffuse(_)5-mil FEP Teflon/1800 A Silved

0

400 A Inconel/Adhesive

o
l-mil Kapton/2000 A Aluminum

O.5-mil Kapton/2000 _ Aluminum

Laminate No. 1 (O.3-mil Kapton/5-mil
Type C Teflon/Silver/Inconel/
Adhesive)

Laminate No. 2 (O.15-mil H-film/
5-mil Type C Teflon/Aluminum/
Adhesive)

BTDA/ODA polyimide film/
Polished Aluminum

PPQ (polyphenylquinoxaline)/
Polished Aluminum

Number of Samples Exposed in

Test 1 Test 2 Test 3

3®

3® 3®

2

2

2 2

2

3

2

2

2

3®

3@

3

2

2

2

2

3

i

3

NOTES: CD Thickness in mils stated so as to conform with manufacturer's
specification. In metric units, each mil equals 25.4 micrometers, and
5 mils equals 0.127 millimeter. ® An additional sample of this material
was present in the vacuum environment (but shielded from radiation exposure)
as a control or "standard". (_) One of these 4 samples was perforated at 3

places within its 1 cm_ area just prior to mounting in the test chamber
4(4) An approximation to diffuse reflection was produced by an embossing tech-
nique prior to metallization.
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Table IV. Test 1 Solar Absorptance Values (l-Sun Rate)

Before Exposure
In Air In Vacuum

In Situ After
I00 hrs. 303 hrs. 588 hrs.

Sample
Description Number C

Aluminum (control) (27) (0.118) (0.108) (0.105) (0.106) (0.106) (-0.002)

(II) (0.158) (0.152) (0.146) (0.I 51 ) (0.I 52) {0.000)

5-mil FEP o 1 0.155 0.147 0.163 0.190 0.226 0.079
Teflon/2000 A 2 0.155 0.148 0.164 0.193 0.230 0.082
Aluminum

3 0.155 0.149 0.164 0.195 0.228 0.079

(18) (0.103) (0.096) (0.088) (0.088) (0.089) (-0.007)

5-miloFEP Teflon/ 24 0.I00 0.092 0.099 0.116 0.151 0.059
1800oA Silver/ 25 0.099 0.093 0.098 0.119 0.142 0.049
400 A Inconel

26 0.102 0.096 0.099 0.125 0.166 0.070

Embossed Silvered 15 0.096 0.089 0.096 0.124 0.148 0.059
5-mil FEP Teflon 16 0.099 0.099 0.097 0.126 0.150 0.051

2-mil FEP Teflon/ 13 0.080 0.071 0.078 0.096 0.107 0.036
Silver/Inconel 14 0.078 0.069 0.076 0.095 0.106 0.037

l-miloKapton/ 5 0.360 0.352 0.376 0.403 0.417 0.065
2000 A Aluminum 9 0.361 0.352 0.381 0.416 0.432 0.080

6 0.323 0.313 0.336 0.360 0.373 0.060
I/2-_iI Kapton/ 7 0.324 0.312 0.339 0.364 0.379 0.067
2000A Aluminum 8 0.323 0.314 0.342 0.371 0.386 0.072

PPQ/Polished 12 0.374 0.365 0.392 0.420 0.437 0.072
Aluminum 17 0.394 0.386 0.424 0.461 0.478 0.092

BTDA-ODA/ 19 0.452 0.440 0.474 0.495 0.521 0.081
Polished Aluminum 23 0.437 0.428 0.465 0.486 0.510 0.082

Laminate No. I 20 0.246 0.236 0.259 0.285 0.308 0.072

(Kapton/Teflon/ 21 0.244 0.238 0.261 0.239 0.337 0.099
Silver/Inconel) 22 0.247 0.242 0.264 0.295 0.318 0.076

Laminate No. 2
4 0.362 0.350 0.367 0.415 0.455 0.105

(H-film/Teflon/ 10 0.356 0.346 0.373 0.409 0.447 0.091
Aluminum)

Change in %C)

After 588 hrs.

NOTES: (D Sample numbers and data in parentheses represent unexposed control samples. For
the other, exposed samples, the test hours listed in column headings are numerically equal
to UV sun hours (ESH). Proton and electron fluences that correspond to these test hours
are listed in Table II. C) Change in solar absorptance is the final in situ value after
588 hours, minus the value in vacuum before exposure.
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region over which aluminum is highly reflective and therefore more sensitive

to apparent degradation. Figure 6 also shows the ms changes in diffuse (em-

bossed) 5-mil FEP Teflon and in the 2-mil FEP Teflon, for further comparison.

Data from the 3 types of Kapton surfaces exposed in Test 1 are shown in

Figure 7, which indicates the highly consistent results obtained from the

measurements on these similar materials. The precision of the CRETC reflec-

tance measurements, as evidenced by stability of control (standard) samples,

was discussed earlier in the Section, "Test Parameters and Operations" (see

Figure 5).

0.10

0.08

TYPE AVE OF

--4=- 1-MIL KAPTON (2)

,--O--, ½-MIL KAPTON (3)

KAPTON/'rEF LON (3) ,e-,._
(LAMINATE NO. 1) O'4

0.08

0.04

0.02
J 1-SUN RATE J

0 0
I I I I I

100 200 300 400 500

EXPOSURE HOURS (- UV ESH)

6OO

Figure 7. Change in Solar Absorptance for
Kapton Samples During First Test
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A graph of each sample's reflectance as a function of wavelength for all

measurement times in Test 1 (equivalent to one full row of data in Table IV)

is included in Appendix A.

Principal Results, Test 2.-Following the end of the first test, a 610-

hour exposure was conducted on like samples using a 1.5-sun rate, for an

equivalent exposure of 915 hours (Table I). It was determined from the data

in this test that the dielectric properties of certain sample formulations led

to a high density of electrical discharge breakdowns in the polymer layer(s)

and underlying metals, in response to the simultaneous charged particle flux

of 3 x 10 9 electrons cm-2 sec -I and 3 x 109 protons cm-2 sec -I. Other sample

formulations withstood this charge arrival and buildup rate. The electrical

discharge phenomena were visually manifested as an alteration of the polymer

films from a transparent condition to a translucent nature. Therefore those

showing breakdown became diffusely transmitting and reflecting (gray) instead

of allowing a specular reflection from the second-surface metal. Large ms

changes were noted in samples with a high density of electrical breakdown

sites. Sites were concentrated in different portions of the 1 cm2 area of

each sample; since the spectrophotometer measurement beam illuminates a 4 mm

square in the center of any given sample, some variation in reflectance

changes was noted from sample to sample depending on local breakdown-site

density. The tabular ms data for this test (Table V) indicates the extent of

these sample-to-sample differences, which have been averaged in the 2 figures

that follow. The ms changes in several Teflon coatings are shown in Figure 8.

Figure 9 is for samples having a Kapton outer (exposed)layer.

Appendix B contains plots of reflectance versus wavelength for every

sample in Test 2. The large decreases in hemispherical reflectance during

the first exposure increment (from 0 to 64 hours) are evident for those

samples which underwent severe discharge breakdown.

Principal Results, Test 3.-The third test involved a return to exposure

at a l.O-sun ("real-time") rate (see Table I). As previously indicated, a new

sample formulation was added, having finely divided silver in the adhesive

(Table III). Another emphasis in this test (previously stated) was the

acquisition of more early-test-hour reflectance data. Thus the first exposure
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Figure 8. Change in Solar Absorptance for
Teflon Samples During Second Test

].26

.24

0.22

0.20

1.04

increment was from 0 just to 44 hours. This small increment successfully

caught the threshold for reflectance changes in the test samples. Figure I0

compares the various Teflon-surface coatings tested. Spectral reflectance and

solar absorptance changes in the samples with silver-filled adhesive were con-

fined to the low values previously obtainable only in 2-mil silvered Teflon

(compare Figure I0 with Figures 6 and 8). In contrast to the first test, the

aluminized 5-mil FEP Teflon samples exhibited less degradation than the 5-mil

silvered FEP Teflon samples. No explanation can be given for this difference

between test 1 and test 3 data, although the difference is only approximately

0.02 in _svalues.
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Figure II presents data on samples with a Kapton outer layer. Data

presented in Figures lO and II are drawn from Table VI, which indicates ms

values for all samples in Test 3. Appendix C consists of spectral reflectance

plots, one for each sample tested in Test 3.

The test samples used in this program were prepared over a period of ap-

proximately 8 months, and it appears from the data values that batch-to-batch

differences occurred in some cases. For this reason no attempt has been made

to gather ms values from Tables IV to Vl for the purpose of summarizing results

on the PPQ and BTDA/ODA polymers in figures similar to those above. Moreover,

we observed that the reflectance of individual samples of a given type of

coating sometimes degraded at appreciably different rates, though tested at
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Figure I0. Change in Solar Absorptance for
Teflon Samples During Third Test

adjacent positions in the chamber. In some cases this is a matter of how

early in the test dielectric breakdown began in that portion of the sample

illuminated by the DK-2A reflectance measurement beam (which was always at

the center of the sample). Figure 12 illustrates this; it shows changes in

ms in 3 samples of 5-mil silvered FEP Teflon during Test 3 (samples 24, 25,

and 26 in Table VI). A few other similar cases can be discerned from Tables

IV, V, and VI.

Secondar_ Results, Test l.-Though the materials investigated in this pro-

gram are intended for orbital use, it was also desired to obtain data indicat-

ing the coatings' reflectance and absorptance characteristics in air, which

would have pre-launch applicability. In nearly all cases, pre-test reflectance

values in air have been found to be equivalent to values measured when the

sample is in vacuum and before exposure takes place. Exact ms values have
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been included in Table IV, and reflectance curve shapes are included in the

figures of Appendix A.

Secondary Results, Test 2.-At the end of the radiation exposure period

for Test 2 the samples were purposely left in vacuum for a period of 310 hours

following the 610-hour measurements; then I0 of them were measured again.

This kind of study has come to be known as an in situ or in-vacuum recovery

check, or a test of coating reflectance stability in the damaged state. In

the past (Reference I), some thermal control coatings, especially diffusely

reflecting white paints, have shown substantial recovery toward original

24



(pre-test) reflectance values, even when they remain in ultra-high-vacuum

(between, say, 10 -9 torr and 10 -8 torr). In the case of this program the

vacuum measured during the 310 hours was between 2 and 3 x 10 -9 torr. Recovery

in this vacuum environment was less than 0.01 (as to solar absorptance changes).

For the I0 samples measured, the exact ms differences following 310 hours in

the dark in vacuum have been included in Table V. Ten graphs showing the

reflectance curves measured, from which the ms values were derived, are in-

cluded herein as Appendix D.

Secondary Results, Test 3.-Post-test, in-air reflectance characteristics

of the materials investigated for this program were measured following Test 3.

The final in situ reflectance data was obtained as scheduled (Tables II and

VI) after 636 hours of exposure to UV, electrons, and protons. Further ex-

posure was begun to obtain longer-term data, but facility vacuum was lost at

850 hours, and final in-air reflectance data was obtained immediately there-

after. Thus instead of a "short-time" comparison of sample reflectance for

636 hours, in situ, and 636 hours, in air, one has, for the last 2 sets of

data from Test 3, 636 hours, in situ and 850 hours, in air. Rates of degrada-

tion in situ such as those shown in Figures I0 and II, if extrapolated to 850

hours would show well the base from which recovery was made in air by each

sample, ending with reflectance characteristics shown in the graphs of Appendix

E, and the ms values of Table VI. For several materials the amount of re-

flectance recovery in air approximately offset the degradation in situ between

636 and 850 hours, so that the final data in air is numerically comparable to

the 636-hour data taken in situ.

Discussion

The phenomenon of dielectric breakdown in polymeric thermal control

coatings has never been revealed as graphically as in this program. We have

conducted a series of tests under contamination-free vacuum/radiation simula-

tion conditions, the results of which include a discerning of which polymer

thicknesses and formulations can tolerate what charged particle fluxes or

orbital environment. While much remains to be done in the area of damage

mechanisms, a "charge model" can be described, and further developed once a

larger data base is established in the future.
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The combined thickness of 5-mil Teflon plus an adhesive layer is required

to stop all incident ll5-keV electrons; but 50,keV protons are stopped even in

the thinnest polymers exposed during these tests. A model with positive- and

negative-charge zones emerges, from which one can derive strengths of electric

fields as a function of depth and/or time, the latter being a function of

orbital conditions (.environmental charged-particle fluxes). Protons tend to

accept electrons, once stopped, and diffuse as hydrogen gas at rates dependent

upon material properties. In many cases, it can be shown, E fields from elec-

tron irradiation build up to values beyond a material's dielectric strength,

resulting in breakdown along a locally preferred and momentarily advantageous

path. Figure 13 illustrates the geometry and charging conditions for 2-mil

and 5-mil Teflon as prepared for these tests.

INCIDENT PROTON N_ ELECTRON SEAMS

P+ E" P÷ r P÷ _ P+ r P÷ E" P÷ E" P÷ E" *÷ E" '÷

(PR_ $TOIqDIEO IN ALL DIELECTRIC THICKNESSES STUDIED)

VAPOR -DEPOSITED

ALUMINUM, OR SILVER
AND INCONEL

SILICONE

KAPTON

SILICONE

ELECTRONS

STOPPE 0 IN

DIELECTRIC

ALUMINUM -- m-
SUBSTRATES

+++++++_+++_÷++

SILICONE - -

KAPTON

SILICONE .......
I

_ST!
ELECTRONS

REACH METAL

SUBSTRATE

(WHICH iS

GROUNDED)

GROUNDED TEMPERATURE CONTROL SAMPLE BLOCK

2-MIL FEP TEFLON

VAPOR-OEPOSITEO

SILVER AND INCONEL

Figure 13. Expanded View of Adhesive-Bonded
Thermal Control Coating Samples
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The effects of irradiation of 5-mil Teflon and its adhesive layer by the

combination of ll5-keV electrons and 50-keV protons have been studied by the

Monte Carlo code ETRAP. This program is a modification of an existing elec-

tron transport code to include the effects of charge trapping in dielectric

materials. The electrons are followed by the Monte Carlo process, with col-

lective effects such as induced fields, potentials, and current flow, as well

as radiation-induced transient conductivity, included in the modeling.

Figure 13 (left half) shows the problem geometry. The incident electrons

are stopped in the Teflon and adhesive backing, with a charge distribution

shown in Figure 14. Due to electron multiple scattering the distribution of

stopped electrons extends from near the irradiated surface to the adhesive

layer, with the peak charge density occurring at a depth of 6 mils (in the

upper silicone adhesive layer). Positive charges, consisting of incident

protons at the front surface and induced charge in the aluminum substrate,

will result in both surfaces of the dielectric sandwich being near zero poten-

tial. There is, therefore, little decelerating effect exerted by the test

samples upon energetic particulate radiation arriving at the sample plane.

But the resulting electric fields and internal potentials create dielectric

stress of great intensity on a microscopic scale. This is a mechanism of

damage in polymers. The resulting fields and potentials developed in FEP

Teflon and its adhesive after 103 seconds irradiation are shown in Figure 14.

The peak field strength after 103 seconds already exceeds the dielectric

failure level of some dielectrics (500-1000 volts/mil or 2-4 x 105 volts/cm),

and additional exposure produces dielectric stress exceeding the most op-

timistic breakdown data for Teflon.

Figure 15 shows the increase of front and rear surface field strength

with time. The slight non-linearity shown is due to the radiation-induced

conductivity in the material, and the resulting current flow with increasing

electric field. The initial conductivity used for these calculations is

10 -16 mho/meter. The radiation-induced conductivity is increased to 10 -14

mho/meter when an electron flux (dose rate) of 2 x 109 electrons/cm2-sec is

used for sample exposure.
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These exploratory calculations have modeled the general physical processes

at work in an irradiated dielectric. More precise calculations using recently

developed field-strength-dependent conductivity data, and taking into account

the temperature-dependent conductivity of illuminated Teflon (or Kapton), are

recommended as future work for more complete predictions.
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CONCLUSIONS

Correlating all of the data from this series of 3 tests with electrons,

protons, and UV, we conclude:

It is possible to select a polymer thermal control coating from among

those investigated that will not degrade catastrophically under simultaneous

exposure. Some trade of a s, _, or _s/_ ratio may be necessary in making this

selection.

On the other hand, many choices of film thickness or other parameters

involved in coating formulation will surely result in substantial dielectric

breakdown in the materials under orbital conditions similar to those simulated

for this program.

A substantial reduction in degradation, in this high energy radiation

test environment, was obtained by the use of a partially conducting adhesive.

RECOMMENDATIONS

Therefore Boeing can unreservedly recommend that experimental and de-

velopmental work of the type conducted herein be continued, to examine the

widest possible orbital environment conditions and to optimize the selection

of spacecraft thermal control coatings for all conditions that NASA will have

to meet.

In particular, experiments should be continued with UV and protons com-

bined with lower energy electrons (on the order of 30 keV), to further survey

the high-flux, low-energy end of the spectrum. This energy region has recently

been shown to have great significance in spacecraft discharge phenomena

(References 2 and 3).

In parallel with these experiments, Boeing recommends undertaking efforts

to improve the polymers used in thermal control coatings. Recent amalgamation

of efforts at Boeing has led to development of several promising approaches

that should be tried.
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APPENDIXA

Test 1

Appendix A contains one computer plot of reflectance data

for each sample tested in situ in the 588-hour Test I,

including 3 control samples. The data plots are presented

here in the sameorder as samples listed in Table IV, the

table that lists solar absorptance values and changesmeasured

during Test I. The solar absorptance values listed in Table IV

and in the legends on the plots of Appendix A are derived

from the computedreflectance curves and values shown in

Appendix A.
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APPENDIX B

Test 2

Appendix B contains one computer plot of reflectance data

for each sample tested in situ during Test 2 (610 hours,

915 equivalent sun hours). The data plots are presented

here in the same order as samples are listed in Table V.
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APPENDIX C

Test 3

Appendix C consists of one computer plot of reflectance

data from each sample tested during Test 3 (636 hours

in situ), The data plots in this Appendix are presented

in the same order as samples are seen to be listed in

Table VI.
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APPENDIX D

Test 2

Appendix D consists of I0 computer-generated reflectance data

plots. Each data plot contains 2 curves that also appear in

Appendix B -- curves 1 and 5. The third curve -- curve 7 --

indicates the degree of reflectance stability in situ for the

I0 samples measured 310 hours after a previous measurement

(curve 5) that took place just following exposure for 610

test hours. The solar absorptance values indicated along with

curve 7 correspond with those given in the right-hand column

of Table V.
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APPENDIX E

Test 3

Appendix E contains one plot of spectral reflectance as

a function of wavelength for each sample tested during

the third test for this program. Curves 1 and 5 on these

plots repeat data presented earlier with the same numbers

in Appendix C. Curve 6 appears only in this appendix, and

indicates solar absorptance for a sample in air following

the end of Test 3 at 850 hours. The _ data herein also
s

appears in the right-hand column of Table VI.
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